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Abstract

Nowadays, with the advance of web and internet technology, Artificial Intelligence (AI) has
significantly improved productivity in production and become an integral part of labor mar-
ket. Motivated by this, our study empirically examines the impact of AI on the economy. We
construct a multi-agent economic environment that incorporates both human and AI agents.
A key distinction between AI and human agents lies in the seamless sharing of skills among
AI agents, while humans continue to develop their own skills. Furthermore, we thoroughly
discussed the implications of AI ownership on social welfare. We employ the Proximal Pol-
icy Optimization (PPO) algorithm to train all agents in the environment. Through our ex-
periments, we uncover several important findings: Firstly, the introduction of AI results in
a substantial increase in overall productivity. The presence of AI leads to a crowding-out
effect, replacing humans in the production Secondly, AI’s value creation heavily relies on
the attention it garners, and an open AI market/technology notably boosts its progress and
worth. Companies with diverse products and AI tech display greater influence in this trend.
Furthermore, we highlight the significance that implementing a proper tax policy enables the
effective utilization of the productivity advantages brought by AI while mitigating its nega-
tive impact. Overall, our work provides new insights on the complex interactions between
humans and AI in economic activities.
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1 Introduction

The development and widespread adoption of web and internet technology revitalized nu-
merous fields, infusing them with new energy. As we enter the post-internet era, the pervasive
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influence of web and internet technology remains unabated, continuously shaping and impact-
ing other emerging domains. Nowadays, as a natural extension of the internet era, Artificial
Intelligence (AI) has seamlessly integrated into society, revolutionizing productivity processes
and significantly enhancing productivity. AI technologies have demonstrated their prowess in
various domains, such as online displaying advertisement (Gharibshah et al., 2020), manufac-
turing (Arinez et al., 2020), recommendation systems (Zhang et al., 2019), healthcare (Secinaro
et al., 2021), and automated driving (Grigorescu et al., 2020). In addition to its positive impact,
AI has also brought negative effects on the labor market, saying substituting labor. The advent
of AI leads to higher unemployment and job polarization (Autor and Dorn, 2013). Frey and
Osborne (2017) and Bowles (2014) estimate that up to 47% and 54% of jobs in the US and
EU could be automated within 10 to 20 years. According to Goyal and Aneja (2020), AI will
displace about 20% of the global workforce, and there is a growing concern about job loss.
Moreover, not only labor market is affected, but also the resulting productivity and inequality
balance is shifted. AI substitutes both skilled and unskilled labor, leading to heterogeneous
income change among human agents. This brings higher output and welfare but at the cost of
increased income and wealth inequality (Korinek and Stiglitz, 2018).

Therefore, it is crucial to examine the impact of AI technology on the economy. While
a limited body of literature has started exploring this subject, there remains a need for further
investigation. For example, Acemoglu and Restrepo (2017) develop a model to understand
how AI replaces labor in the production process. Aghion et al. (2018) identify constraints on
economic growth arising from Baumol’s cost-disease effects in the context of AI. Sachs (2018)
acknowledge the potential income redistribution from workers to owners of “business capital"
as AI advances. Bessen (2018) emphasizes the importance of income elasticities of price and
demand when assessing the implications of AI. Gries and Naudé (2018) extend the existing
literature by incorporating AI-facilitated automation into standard product variety models and
accounting for demand-side constraints on outcomes. In our study, we contribute to this literature
by incorporating learning and skill-sharing AI in a multi-agent reinforcement learning (MARL)
environment, further exploring the dynamics of AI’s impact on the economy.

In addition to exploring the impact of AI on individuals, as global competition among
major powers intensifies in the technological sphere, technology blockades and technological
protectionism are gradually becoming the new normal in international competition. In this
environment, major technology companies have to face various challenges posed by technology
blockades in order to maintain their competitive edge. The issue of technology "ownership" is
particularly important in this context. It not only concerns the core competitiveness of enterprises
but also involves strategic planning for national security and economic development. However,
unfortunately, this critical issue has not received sufficient attention and research in traditional
economic fields. This is mainly because existing economic theories and models struggle to
deal with complex scientific issues involving ownership, especially when different advanced
technologies are in the hands of different companies, increasing complexity exponentially.
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Currently, academic research primarily focuses on the specific applications of AI-generated
technologies, such as the ownership ofAI-generated images (Aziz, 2023). Although these studies
have their value, they do not address the core issue of technology ownership. We know that it
is crucial for companies and countries aspiring to make breakthroughs in technology to clarify
and grasp technology ownership. This not only concerns economic interests but also affects the
direction of technological development and the future social landscape.

In this paper, we study how AI affects human workers in a Human-AI hybrid environment.
The key difference between AI and human agents is that we assume AI agents can share skills
frictionlessly. The rationale behind such an assumption is that we consider the case where all
AI agents share their parameters with each other. This assumption is supported by the rapid
progress of federated learning (Li et al., 2020, Zhang et al., 2021) and web and internet technol-
ogy (Korinek and Stiglitz, 2018). In federated learning, different AI agents can collect data and
update their local parameters in a decentralized manner, and then aggregate all the information
from the AI agents to update a centralized set of model parameters. Additionally, advancements
in web and internet technology have made information transmission more efficient (Korinek
and Stiglitz, 2018), enabling AI agents to share skills effectively. These techniques enable AI
agents to efficiently share skills and continuously stay at the forefront of technological advance-
ments. In contrast, humans gradually improve their skills through practice, experience, and
minor innovations, resulting in a significant cost of learning.

We expanded upon the work of Zheng et al. (2021, 2022), constructing a multi-agent
environment that introduces two types of agents (AI and human agents) to study how AI
affects the economy. The specific settings of the environment and agents enable us to study
how AI affects the labor market in detail and the resulting aggregate impacts. Specifically,
our environment has three objects, World, Agents, and the Planner. The World consists of
resource distributions and information of active agents. There are two types of Agents (AI
and human agents), whose main difference is whether they can share skills frictionlessly. The
objective of agents is to choose actions to maximize their lifetime utility. The Planner is to
redistribute the income of all agents through taxation, with a trade-off between productivity and
equality. The ownership setting is as follows: If a human owns the ownership of an AI, then
all products/incomes produced by this AI agent will be freely obtained by this human agent.
To solve this model, we apply the PPO algorithm Schulman et al. (2017) to solve the above
multi-agent environment and achieve equilibrium.

Firstly, We find that the application of AI agents has various impacts on the economy from
the micro to macro level, which can be explicitly described as follows:

1. The presence of AI agents, which possess the capability to share knowledge with each
other, enhance overall productivity in the economy.

2. The application of AI leads to a crowding-out effect, particularly impacting individuals
with middle incomes, while having a minimal effect on those with high or low incomes.

3. Optimal taxation, implemented through income redistribution, can foster productivity and
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equality within the Human-AI hybrid society.
Then, the ownership research found that:

1. If all products/incomes produced by AI agents are simply attributed directly to a human,
AI agent will choose to give up all labor, as they will not have any utility.

2. In order to stimulate the labor enthusiasm of AI agents, we envision that social planner can
allow AI agents to retain a portion of their income as investment. This initiative greatly
increases the enthusiasm of AI agents to engage in work.

3. When exploring the setting of skill sharing, we found that the more open the technology
community is, or the more technology the AI owner have, the faster his tech will develop.

2 Model

This section provides an overview of the environment setting. We construct a simulated
multi-agent economic environment that mirrors a real-world environment, which is akin to
a Gather-and-Build game, yet its core mechanism centers on interactions among agents and
economic behaviors. By continuously optimizing the behavioral strategies of various agents
within the environment, we aspire to ultimately uncover the motivations and patterns behind
agents actions. The model primarily consists of three aspects: the World, Agents, and Planner.
In the following subsections, we will delve into these three aspects, exploring the constituent
elements of each part and their economic implications.

2.1 World

TheWorld is composed of a two-dimensional grid (each (i, j) ∈ N ×N ) that encompasses
a variety of resources. The world serves as the core of agent activities and resource distribution,
forming the fundamental platform for various economic behaviors.

The world is composed of several layers, each containing unique resources and settings.
At the bottom lies a detailed world map featuring grassland and water areas. Agents can move
freely on the grassland, but they cannot cross the water bodies. In addition, there is a resource
layer primarily consisting of two renewable resources: wood and stone. These resources have
a probability of ρi,j to regenerate at each grid point. Following this is the construction layer,
agents have the option to consume wood and stone to build houses. Once a house is built, it
permanently stands at that location, and different houses cannot occupy the same grid. The
topmost layer is dedicated to recording agent activities, precisely marking their positions in the
world and clearly defining their visible range and activity areas. The specific attributes of each
resource are shown in table 1.

The initial World generates a random distribution of resources, which can be visually
represented in fig. 1. All agents actively engage with the world by taking actions and interacting
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Table 1: World resource attributes Table

Collectability Renewability Private Passability Tradeable
Wood Yes Yes No Yes Yes
Stone Yes Yes No Yes Yes
House No No Yes Yes No
Water No No No No No

with it. Certain actions have the potential to alter the distribution of resources or modify agent
information within the world.

Stone
Wood
Water
Agent

Figure 1: An example of a world map includes resources such as wood, stone, and the basic outline of
the map, along with the initial positions of the agents.

2.2 Agent

In our benchmark, we consider two types of agents: AI agents and human agents. Within
each agent type, there is a degree of heterogeneity. Agents have distinct attributes, namely their
inventory xi,t and skills si,t. The inventory attribute reflects the number of collectible resources
an agent possesses, including wood (xwi,t), stone (xsi,t), and coins (xci,t). Skills, on the other hand,
represent an agent’s proficiency in various tasks, particularly labor actions.

2.2.1 Action

Agents can choose four actions: Move, Gather, Build, and Trade.
• Move. Agents have the ability to move within the World in four cardinal directions: up,
down, left, and right. However, there are strict constraints that govern their movement.
Agents are not allowed to cross the boundaries of the World or traverse impassable grids
– water. Each movement from one grid to another incurs a labor cost (lM ), and once the
Move action is completed, the agent’s position within the World is adjusted accordingly.
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• Gather. When an agent reaches a grid containing collectible resources, they can choose
to perform a Gather action. The act of Gathering requires the expenditure of labor (lG).
After the completion of the Gather action, the resources within the grid are depleted,
and the agent’s inventory is simultaneously augmented with an increased quantity of the
collected resources.

• Build. In a scenario where the agent’s inventory comprises one unit of wood and one unit
of stone, and the current grid the agent occupies is vacant, the agent has the option to select
a Build action. The act of Building requires the expenditure of labor (lB) and resources
(1 wood and 1 stone). Once the Build action is completed, a house is constructed in the
corresponding grid, and the agent receives a coin income as a result.

• Trade. The Trade action in our environment is similar to the continuous double auction
mechanism described in Zheng et al. (2022). The central market emphasizes that buyers
and sellers can submit their trading requests to themarket, which thenmatches transactions
based on these requests. In the model, a central market is established within the economic
world map, where economic participants can submit requests to buy or sell ({ask, bid}).
Specifically, they can propose to buy or sell a quantity of h of item i ∈ {W,S} (xi) and
give a price of pi for each item ({ask/bid, h, xi, pi}). If the bid is not less than the ask,
the two requests will be successfully matched, and the transaction will be established,
resulting in an exchange of resources. Subsequently, buyers and sellers proceed to the
Central Market to collect their respective purchases or coins based on the trade’s outcome.

2.2.2 Learning

Agents can improve their productivity through practice, self-perfection, and minor innova-
tions.Such behavior is called learning by doing (Arrow, 1971). In our model, agents accumulate
working skills while taking actions: Move, Gather, and Build ({sM , sG, sB}), which affects
their corresponding productivity. The skill accumulation is affected by labor expenditure la and
learning rate ρa, which follows sai,t = sai,t−1 + la ∗ ρa a ∈ {M,G,B}.

The main difference between AI and human agents lies in their approach to acquiring
working skills. Human agents primarily rely on the process of “learning by doing" to enhance
their skills over time. They gradually improve their abilities through practice, experience, and
minor innovations. In contrast, AI agents possess the unique capability to effortlessly share
working skills with each other in real-time. This enables them to quickly adapt and benefit from
the collective knowledge and advancements within the AI network. Prior to each period, all AI
agents synchronize their working skills with the skill frontier, aligning themselves with the most
up-to-date and effective approaches. This dynamic skill-sharing mechanism allows AI agents to
continuously improve and excel in their tasks, surpassing the limitations of individual learning.
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2.2.3 Skill

Agents possess skills in three specific actions: Move, Gather, and Build, denoted as
sM , sG, sB, respectively. These skills have distinct effects on the agents’ performance in each
action.

• Gather: In the Gather action, an agent’s skill level influences the gather probability. A
more skilled agent has a higher probability (min(1, 1

1−e−(sG−2)
)) of successfully gathering

an extra unit of resource. The gather probability increases exponentially with the agent’s
skill level, allowing highly skilled agents to gather additional resources more frequently.

• Move: In theMove action, an agent’s skill level determines their efficiency in traversing the
world. More skilled agents can cover greater distances with reduced labor consumption.
The labor cost for moving is calculated as (lM = lM0 × (1 − max(0.5, 1

1−e−(sM−10)
))),

where lM0 denotes the baseline labor cost for movement. Skilled agents can move more
efficiently, conserving labor resources.

• Build: The action of Build is positively related to the coin income, which can be
explained as more skilled agents tend to have more income after the Build action is
finished.(max(paymax, s

B), where paymax denotes maximum Build income multiplier.)

2.2.4 Utiltiy

Agents derive utility from their coin holdings while incurring a negative utility from
engaging in work. The utility function can be expressed as follows:

ui(x
c
i,t, li,t) =

xci,t
1−σ − 1

1− σ
− li,t, li,t =

A∑
a

lai,t A = {M,G,B} (1)

Where x is the stock of agents coins, l represents the labor expenditure of individuals, and
σ represents the risk aversion index of agents. In other words, the larger stock of coins, the
smaller the labor expenditure, the agents will have a higher utility.

2.2.5 Optimization

We have provided the utility function for agents. However, it’s important to clarify that
agents action within a simulated environment, utilizing the given utility function to adjust
and optimize their actions in pursuit of maximizing their lifetime utility function. Taking
tree gathering as an example, untrained agents may wander randomly in the environment and
occasionally choose to gather when they stumble upon a tree. In contrast, well-trained agents
can quickly locate the nearest tree and head directly there for gathering based on all available
information.

To further optimize the entire model, we have extended the simulation to T = 1000 periods.
This means that agents will continuously operate and optimize their behaviors in this simulated
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environment for up to 1000 periods. After each period, we randomly reset the environment and
continue the optimization process until the agent’s lifetime utility function stabilizes. Therefore,
the agent’s lifetime utility function can be expressed as:

max
πi

Ua∼π,s′∼Γ,o′∼Γ,τ

[
ui(x

c
i,0, li,0) +

T∑
t=1

βt(ui(x
c
i,t, li,t)− ui(xci,t−1, li,t−1))

]
(2)

Here, β is the discount factor in periods, πi represents the action policy of agent i, cause
our model contains many agents, the decisions of different agents may affect each other, so that
each agents takes into account the decisions of other agents when making decisions. s denotes
the current state of the agent (including inventory, skills and locations), and o represents the
information set that the agent can currently observe (social state - tax rate, n× n around world).
In our model, the measure of utility is based on the stock of coins. Thus, the utility gained by
an agent in each period can be defined as ri,t = ui(x

c
i,t, li,t) − ui(xci,t−1, li,t−1). This equation

implies that agents need to determine their action policy πi to maximize their total lifetime
rewards, which is represented by the summation

∑
βtri,t, given the taxation τ , the agent’s state

s, and the action policies of other agents π−i.
Therefore, the challenge mentioned above can be described as an optimization problem

within a multi-agent environment that encompasses various taxation systems.

2.3 Planner

The planner assumes a role similar to decision-making bodies such as governments, with
the goal of maximizing social welfare. In the aforementioned model, variations in agents’
birthplaces and resource endowments give rise to income disparities. Taking this into account,
and based on the characteristics of the model, we set the planner’s objective as maximizing the
overall benefit of social total productivity and human equality (without AI agents). To achieve
this goal, the planner possesses the authority to levy income taxes, collecting them from all
agents in the economy (including AI agents) at a tax rate denoted as τ . Subsequently, these
taxes are redistributed evenly among human agents, a process we refer to as "redistribution."
The planner’s objective can be formulated as a maximization problem, expressed as follows:

max
τ

Productivity(All, τ)× Equality(Human, τ)op∼Γ (3)

Productivity is the total social coin output in period T, Equality is the Gini coefficient,
and op denotes the information set that is currently available, enabling the planner to observe
and assess relevant factors influencing the system’s dynamics and outcomes. Then the tax rate
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determined through the above maximization process is referred to as the optimal taxation.

Productivity(All, τ) =
N∑
i

xci,T

Equality(Human, τ) = 1−Gini(xci,T ) ∀ i ∈ Human agent

(4)

Meanwhile, based on the specific settings of the model, we have decided to implement
a taxation strategy throughout the simulated T periods of individual activities. It’s important
to note that the definition of a "period" here differs slightly from that in traditional economic
models. In our simulated environment, a "period" represents a single action decision made by
an agent. Some agent’s actions may not generate income, but they still consume a "period"
opportunity. Therefore, we have chosen to conduct taxation every Ttax = 100 periods. In other
words, after every Ttax periods of simulate/training, we will calculate the income generated
by all the agent’s activities during those periods and proceed with taxation and redistribution
accordingly. Specifically,

Taxi,nTtax = τ ∗
nTtax∑

t=(n−1)Ttax

(xci,t − xci,t−1)

Lumpi,nTtax =

∑
i Taxi,nTtax

nHuman Agent

(5)

the above equation shows the tax for agent i in period nTtax, while τ is tax rate, xci,t− xci,t−1

is net income in each t. And the below one is the lump transfer for each human agent.

2.4 Reinforcement Learning Methods

The Planner’s problem is inherently challenging as it requires considering the endogenous
responses of all agents whenmaking decisions. The complex dynamics and strategic interactions
resemble a Stackelberg Game or Ramsey Problem. In such scenarios, the Planner acts as the
leader, making decisions that take into account the reactions and behavior of other agents in
the system. This interdependence adds an additional layer of complexity to the optimization
problem.

In our environment, agents take their best strategy based on the planner’s policy, while the
planner selects the optimal taxation policy based on the agents’ actions. To solve the strategies
of agents and the planner, a dual-loop reinforcement learning approach is employed, consisting
of inner and outer loops. The inner loop focuses on agents finding optimal actions, while the
outer loop involves the Planner choosing the optimal tax policy. Iterative iterations of these
loops allow for the model to be solved and refined using the dual-loop reinforcement learning
framework. Such dual-loop reinforcement algorithm is illustrated in fig. 2.
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Figure 2: Training flow chart, the yellow part is an inner loop, and the gray part is an outer loop.
For the inner loop (agents), it optimizes the agents’ actions within the environment. By observing
the environment and private information, the agent must choose appropriate actions to maximize their
lifetime utility. As for the outer loop (planner), the planner maximizes social welfare by optimizing
taxation. This is achieved through observing the environment and each agent’s semi-private information.

Inner Loop In the inner loop, each agent observes her own information from the environment.
Such information includes the current state of the agent i si (skill level, inventory level, etc.),
the information the agent i can observe about the world oi and the current taxation τ . On top of
that, they take action based on their policy

ai ∼ π(·|si, oi, τ ; Φ), (6)

where Φ is the parameters of the agents’ policy networks and a = (a1, a2, . . . , an) denotes the
joint action of all the n agents. Notice that the current taxation τ is determined by the planner’s
policy. Importantly, the planner does not actively engage in the inner loop, resulting in a fixed
taxation policy for each iteration of the inner loop.

Outer Loop In the outer loop, the focus is solely on the planner. It is responsible for iterative
refining and optimizing the tax policy based on the observed income dynamics of the agents.
Specifically, as illustrated in Algorithm 1, the planner updates the tax policy for every TTax
iterations as follows:

τ ∼ π(·|s′, o′p; Φp), (7)

where Φp is the parameters of the planner’s policy network. Through careful analysis of the
agents’ income patterns and performance, the planner makes adjustments to the tax policy to
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Figure 3: A schematic view of Agent/Planner Policy Network, which takes the map layer, resources
layer, and agents layers as inputs. Firstly, we extract feature information from each layer of the map using
CNN networks. Subsequently, we refine the extracted features from each layer using FFN networks.
Afterward, we reduce the dimension of the refined content from each layer using LSTM based on the map
layer. Then, we utilize FFN networks to generate a probability vector for the agents’ action set. Finally,
we construct the loss function based on the maximization objective and optimize the network structures.

maximize overall social welfare and achieve desired objectives. The outer loop allows the
planner to continuously adapt and improve the tax policy based on the observed outcomes from
the inner loop.

Dual Loop Finally, after we collect the transition data of one episode through the inner loop
and the outer loop, we apply PPO (Schulman et al., 2017), a classic deep reinforcement learning
algorithm, to update the policy networks of all the agents and the planner.

Training Network The network used by agents and planner to make actions is shown in the
fig. 3. Taking agents as an example, they observe the world state and social state and then decide
their actions to maximize the current reward. The process can be described as follows: first,
observe the overall environment, then extract features from the environment by CNN, and then
merge the social state and obtain the action matrix (probability for each action) of the agent
by FFN-LSTM-FFN. Then calculate each action’s reward, weigh it as the loss of the current
network output, and then backward to optimize all the above networks.

Pesudo Code We also provide a pseudo-code in 1.
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Algorithm 1: Dual-Loop Reinforcement Learning
Input: Episode Length T , Tax Frequence Ttax
Output: Planner’s policy π(·; Φp), Agent’s policy π(·; Φ)

1 Initialize Φp ← Φp,0,Φ← Φ0

2 for Each Training Episode do
3 World(s, o, op)←World(s0, o0, op,0) /* Reset World */
4 τ ∼ π(·|s, op; Φp) /* Sample Planner Taxation */

// Sampling
5 for timestep = 1 to T do

// Agent Inner Loop
6 ai ∼ π(·|s, o; Φ) /* Sample agent actions */
7 s′, o′, o′p, r

′, r′p ← World(a, τ |s, o, op).step /* Next step and get reward
*/

8

// Planner Outer Loop
9 if t mod Ttax == Ttax − 1 then
10 s′, o′, o′p, r

′, r′p ← World(τ |s′, op).taxation /* Apply taxes */
11 end
12 if t mod Ttax == 0 then
13 τ ∼ π(·|s′, o′p; Φp) /* Update Planner Taxation */
14 end
15

// Save sample data
16 D ← D

⋃
{(s, o, a, r, o′, s′)}

17 Dp ← Dp

⋃
{(s, op, τ, rp, s′, o′p)}

18 end
19

// Training
20 Update Φp,Φ using the PPO algorithm based on data D,Dp.
21 end

3 Experiments - Impact on inclucing AIs

In this paper, we explore five different environments, categorized as fixed taxation and
optimal taxation (without/with a planner). Within each category, we examine environments with
AI and without AI. The experiments are labeled as follows to indicate the specific conditions
under investigation:

• All human (8H): This environment shares similarities with the one described in Zheng
et al. (2022), where all agents are human agents. The taxation setting in this environment
is based on the US Federal Taxation system (Scarboro, 2018), utilizing Bracketed Tax
Schedules. The primary objective for the planner in this setting is to learn the optimal tax
schedule that maximizes the social objective.

• AI and Human (4H4A): The experiment is almost identical to All Human (8H) except
that half of the agents are AI agent. And the planner only cares about the inequality of
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human agents.
• AI and Human with free market (4H4A_free)): This experiment abstracts fromAI and
Human (4H4A) by removing the planner, where there is no taxation or redistribution.

• AI andHumanwithUS taxation (4H4A_US): This experimentmodifiesAI andHuman
(4H4A) by removing optimal taxation. Thus, the model maintains the initially given
taxation. The initial taxation is provided by US Federal Income Tax Rates (Scarboro,
2018).

• AI and Human with the optimal taxation in 8H (4H4A_8Htax): Same as AI and
Human with US taxation (4H4A_US), but the fixed taxation is given by convergent
optimal taxation result in All human (8H).

Table 2: Main settings for the aforementioned environments and introduction of key differences. The
naming convention for the model abbreviations follows the pattern aHbA_c, where a represents the
number of human agents, b represents the number of AI agents, and c indicates the corresponding
taxation rule if present, or indicates the need to optimize for the optimal taxation if absent. For instance,
4H4A_US represents a model with 4 human agents, 4 AI agents, and taxation based on the U.S. taxation.

Model Name Agents Fixed Taxation? (Initial) Taxation
8H (8 human) agents no Trained Taxation
4H4A (4 human + 4 AI) agents no Trained Taxation
4H4A_free (4 human + 4 AI) agents yes Free Market
4H4A_US (4 human + 4 AI) agents yes US Federal Income Taxation
4H4A_8Htax (4 human + 4 AI) agents yes Trained Taxation in 8H

3.1 Model Training

3.1.1 Optimal Taxation

The process, known as optimal taxation, involves continuous optimization of taxation
by planners, aiming to maximize social welfare based on agents’ information and behavioral
decisions within the environment. We conducted our experiments using the RLlib framework
(Liang et al., 2018) and employed the proximal policy optimization algorithms (Schulman
et al., 2017) with the Adam optimizer (Kingma and Ba, 2015) to solve the multi-agent problem
described above. The training process consisted of two phases. In the first phase, agents
were pre-trained without any taxation, allowing them to learn and optimize their actions in the
absence of tax-related constraints. This phase aimed to establish a baseline understanding of
agent behavior and performance. The second phase involved training with the inner-outer loops,
where the planner was introduced. This phase focused on training agents to adapt their actions
based on the taxation policy implemented by the planner. To collect training samples efficiently,
we ran 15 parallel replicas of the environment. In total, we collected 45,000 episodes, with 5,000
episodes in the first phase and 40,000 episodes in the second phase. Each episode consisted of
1,000 timesteps.

The training rewards result is shown in Figure 4.
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Figure 4: Empirical training progress for all models. The 4H4A(Dark Blue) achieves significantly better
social welfare than other models. As the training iterations increase, all models have converged.

From the functional trend, the model gradually converges to a steady state. We then
calculate the average tax rate for the last 50 optimizations as the training result. Then substitute
into the fixed taxation model, and train the model 5000 episodes to get the optimal agent
performance under that taxation.

3.1.2 Fixed Taxation

In contrast to the Optimal Taxation model, the Fixed Taxation model does not allow the
planner to change the taxation. As a result, only the inner loop is present in this model.
Consequently, we only utilize 5000 episodes during the second phase of training, as there is no
need for the planner to refine the tax policy in this scenario.

3.2 Learning by doing

The skill accumulation between AI (agents 1, 3, 4, 6) and human (agents 0, 2, 5, 7) agents
after the introduction of Learning by doing and AI sharing is shown in Figure 5:

The horizontal axis represents the number of timesteps, while the vertical axis represents
the skill value. The skill accumulation trends of AI agents are depicted as dashed lines. The
figure consists of six subplots, each representing a different action skill and model. Subplots
A1 to A3 demonstrates the skill accumulation trends of the three skills when only human agents
(8H) are present, while subplots B1 to B3 showcase the skill accumulation trends when both AI
and human agents (4H4A) coexist.

The skill level of AI agents demonstrates a remarkable superiority over human agents,
exhibiting a higher growth rate. Notably, AI agents working longer hours exhibit a significantly
faster rate of skill improvement. These findings underscore the potential of AI to gradually
replace human agents, particularly in low-skilled work environments. Moreover, they high-
light AI’s capacity for large-scale learning and ongoing advancements facilitated by knowledge
sharing through advanced Internet technology.
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Figure 5: Skill level change without AI(A1-3,8H) agents and with AI(B1-3,4H4A) agents. The skill
level and growth rate of AI agents are significantly higher than those of human agents.

3.3 AI’s Impact

The essence of our model is a Stackelberg Game, characterized by a hierarchical structure
involving two primary entities: agents and a planner. The actions or policies made by these
entities are dynamic and mutually influential. This enables us to observe the operational logic
of the economy and the impact of AI from the unique perspectives of decision-making by both
entities - the agents and the overarching planner.

3.3.1 The agents’ decision

Income/Coin Figure 6 compares the economic performance with and without the presence
of AI. A1-3 represent scenarios with only human agents (8H), while B1-3 represents scenarios
with the introduction of AI agents (4H4A, dashed line). Plot 1 (A1&B1) displays the aggregated
economic information for each agent throughout the entire periods, including net income, taxes,
and transfers. The pre-tax income is the sum of net income and taxes, while the after-tax income
is the sum of net income and transfers. Plot 2 shows the pre-tax coin state of the agents in each
period, excluding taxes and transfers. Plot 3 illustrates the after-tax coin state of the agents,
considering taxes and transfers. In both Plot 2 and Plot 3, the horizontal axis represents the
number of periods, and the vertical axis represents the number of coins.

In all humans (8H) model, notable disparities in income among agents emerge, influenced
by factors such as resource distribution and skill endowment. The ranking of pre-tax income,
from highest to lowest, is as follows (agents’ index): 5, 4, 2, 7, 6, 1, 0, 3. In subplot A2, the
pre-tax income differences and trends become more pronounced. In A3, the impact of taxation
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Figure 6: Wealth information without AI(A1-3,8H) agents and with AI(B1-3,4H4A) agents. There is
a decrease in pre-tax income for all human agents, which is also referred to as the crowding-out effect.
However, the magnitude of this effect varies depending on the strength of human endowments, with
individuals who have stronger initial endowments experiencing a relatively smaller impact. Additionally,
the optimal taxation implemented by the planner, which only considers human agents, can result in more
transfers for human agents. This ensures that their after-tax income (with taxes and transfers) remains
similar to or even better than before the introduction of AI agents.

on inequality is small, and the income trends remain consistent with those observed in A2.
The introduction of AI agents leads to several notable changes in the system:

1. The pre-tax income of all human agents experiences a decrease, affecting both those with
originally higher and lower pre-tax incomes. In contrast, AI agents exhibit a higher level
of pre-tax income, as observed in the comparison between subplots A2 and B2.

2. This effect varies across different agent types. High-income and lower-income agents in
8H (index: 0, 2, 5) can maintain their per-tax income at the original level, while middle-
income agents (index: 7) experience a more pronounced decline.

3. Furthermore, the planner implements redistribution through taxation, levying taxes on all
agents and subsequently distributing the collected tax equally among agents. As previously
mentioned, since the welfare of AI agents is not taken into consideration by the planner,
no transfer payments are made to them. Instead, all tax transfers are allocated to human
agents, resulting in even higher after-tax income for human agents compared to the model
with only human agents (8H).

Working Hours Figure 7 depicts the influence of introducing AI agents on the total working
hours of human agents. The graph provides a comparison of working hours before (8H) and
after (4H4A) the introduction of AI agents, excluding the labor saved through skill acquisition.
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Figure 7: The change in labor for human agents without AI (8H) agents and with AI (4H4A) agents. It
is evident that most human agents opt to reduce their working hours. This represents a displacement of
human labor.

Each line represents a distinct human agent, with the horizontal axis representing the period and
the vertical axis indicating the change in working hours.

From this figure, it is evident that most human agents opt to reduce their working hours,
while there is a slight increase in working hours for human agent 0.This can be attributed to
the fact that human agent 0, who is initially in a disadvantaged productivity position and faced
competition from surrounding agents (as observed in Figure 6 A2), continues to face competition
from AI agents, resulting in small changes in working hours. However, for other human agents,
the impact of competition from AI agents is more pronounced, leading to a noticeable reduction
in their working hours.

Working hours are closely tied to the action choices made by agents. Therefore, with the
introduction of AI agents, we observe a decrease in the overall working hours of human agents.
This indicates that AI agents begin to displace the labor of certain agents, ultimately leading to
a reduction in their pre-tax income.

Division of labor Figure 8 illustrates the changes in different forms of social division of labor
– Trade (trade income, Plot 1), Build (house count, Plot 2), and Gather (resource collection,
Plot 3)) before (8H) and after (4H4A) the introduction of AI agents. The plots are represented
as bar charts, with two columns representing the corresponding data (trade income, house count,
resource collection) before and after the introduction of AI agents. Agents generate income
through building and trading activities, with the building being a high-income activity due to its
higher revenue per unit compared to trade income from building resources (1 Stone + 1 Wood).

From Plot 2, it is evident that the introduction of AI agents leads to a decrease in the number
of houses for most human agents. This effect is particularly pronounced for agents who initially
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Figure 8: Trade, Trade income and Gather information of agents, before (8H) and after (4H4A) the
introduction of AI agents. It is evident that the introduction of AI agents leads to a decrease in the number
of houses for most human agents. Additionally, there is a significant increase in resource trade income
for human agents (Plot 2), indicating their evolving role as suppliers of resources for the construction of
AI agents’ houses.

had a medium or high number of houses (2,7). In contrast, the number of houses built by AI
agents experiences a significant increase. Additionally, due to the strong crowding-out effect,
agents with higher incomes build fewer houses after transitioning to AI agents.

In terms of resources (Plot 3), the overall change in the number of resources collected is
negligible. However, there is a clear trend of decreasing resource numbers for human agents and
increasing numbers for AI agents. Conversely, there is a substantial increase in resource trade
income for human agents (Plot 2), indicating their gradual transition into resource providers
for AI agents’ house construction. The introduction of AI agents significantly displaced human
agents from high-income activities (such as building), leading to a shift in their behavioral
choices towards becoming resource providers.

In summary The introduction of AI agents has a significant crowding-out effect on human
agents, causing a reduction in their per-tax income.

1. Substitution of high-skilled jobs. AI agents crowd out human agents across all activities
(Build and Gather), particularly in high-income activities (Build). Thus, AI agents firstly
crowd out human agents from high income and then from other activities, and finally
force a shift in the agents’ main income methods (become resource providers). This
phenomenon contrasts with the traditional utility of machines, which primarily replaces
repetitive human labor, often associated with lower wages. This is one of the reasons
why AI technologies are regarded as transformative for the future, as they possess the
capability to replace jobs that demand higher levels of skills.

2. Crowding out effect on different human agents. For different human agents, the
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Figure 9: “Equality”, “Productivity” and “Productivity × Equality” in all Models. If a planner chooses
proper taxation, it enables the effective utilization of the productivity advantages brought by AI while
mitigating its negative impact, such as crowding-out effects. Among all taxation policies considered, the
optimal taxation learned in our model training maximizes social welfare by achieving a balance between
equality and productivity.

original high-income agents tend to have little impact, as they can rely on their abilities
and endowments to maintain a higher pre-tax income; For low-income agents, they are
already crowded out by other human agents, and the crowding out after the introduction
of AI will have little impact on them; The middle-income agents are the most affected,
from skills to working hours, and are heavily dominated by AI agents, resulting in a severe
crowding-out effect.

3. Channels of the crowding out effect. The crowding-out effect mainly has two channels.
Firstly, AI agents have a higher skill to dominate low-skilled human agents, thus crowding
out their working hours. So, this generates the crowding-out effect due to substitution.
Secondly, as mentioned before, after the introduction of AI agents, the planner only
considers human welfare and human agents can get more transfers. The after-tax income
of human agents increases significantly. For the original human agents with lower pre-tax
income, because of higher transfers and the negative utility generated by labor, they have
no incentive to labor anymore and choose to stay and give up their labor opportunities to
AI agents. This generates the crowding-out effect due to leisure.

3.3.2 The Planner’s decision

Welfare Analysis Figure 9 represents the equality, productivity (all agents), and productivity
× equality in five models. Equality is measured among human workers. In the Human-AI
hybrid environment, the planner aims to achieve equality through a tax and transfer system. In
the presence of the planner, the use of proper taxation can effectively address the negative impacts
caused by the introduction of AI. Though AI crowds out some human labor, the taxation can
redistribute income from AI to human workers as compensation to the displaced human agents,
reducing the negative effects of AI introduction on social welfare (productivity × equality). In
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summary, the planner plays a crucial role in optimizing social welfare in a Human-AI hybrid
environment. Next, we will analyze specifically from three perspectives illustrated in Figure 9.

1. Equality From the left plot in Figure 9, if the planner employs effective taxation (compared
to free market 4H4A_free), the society is more equal when AI presents. This is because
planner aims to maximize the welfare of human workers, higher transfers can be provided
to human workers by taxing heavily on AI. The substantial transfers can help reduce the
level of income inequality to some extent.

2. Productivity The middle plot in Figure 9 represents the overall social productivity.
The presence of AI agents leads to higher social productivity (See 4H4A, 4H4A_US,
4H4A_free, 4H4A_8Htax) than before (See 8H). This is because AI agents possess
higher skill levels, which leads to increased productivity. In addition, due to the limited
resources in the environment, the substitution of human agents for AI agents allows for
more efficient resource utilization. As a result, there is an overall boost in productivity.

3. Productivity × Equality The right plot in Figure 9 represents the level of social welfare,
measured as a trade-off between productivity and equality. Firstly, if a planner chooses
proper taxation, it enables the effective utilization of the productivity advantages brought
by AI while mitigating its negative impact, such as crowding-out effects. Secondly,
among all taxation policies considered, the optimal taxation learned in our model training
maximizes social welfare by achieving a balance between equality and productivity.

Optimal taxation It is well concerned that the crowding-out effect leads to job losses and
income reduction. Typically, such an effect would also increase inequality. Fortunately, we can
find from the above welfare analysis that, society can achieve an improvement in both equality
and productivity under a social planner. This is due to the proper taxation policy taken by
the social planner. Such results demonstrate a feasible Pareto optimality. AI agents effectively
replace human agents and compensate them through government transfer. Therefore, we can
achieve an increase in economic productivity without compromising human equality, leading to
a welfare-improving society.

Furthermore, the optimal tax rates in different experiments are shown in Figure 10. The
three tax schedules consist of U.S. Federal Taxation (red line), taxation for society with only
humans, saying 8H (green line), and taxation for Human-AI hybrid society, saying 4H4A (blue
line). We can see that, in a society with only humans, the optimal tax is roughly flat across
income brackets, since the objective of the planner is both productivity and equality. However,
in a Human-AI hybrid society, the optimal tax rate is high tax rates for the super high-income
groups and lower tax rates for high-income groups, reflecting a progressive tax schedule for AI.
A roughly flat tax schedule is for lower-income groups (0 - 200 as in the figure x-axis), most of
which are human workers. The tax schedule seems to be flat or regressive, but the net tax rate
(tax - transfer) is very progressive since the welfare transfer is only provided for human workers.
This tax schedule is well related to the policy debate, saying providing Universal Basic Income
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Figure 10: Taxation of 8H, 4H4A and the real US.When there are only human agents, there is a tendency
towards an equalized tax burden. However, with the inclusion of AI, the tax levels are higher for both
low-income and high-income segments.

in a world with robots and AI.

4 Experiments - Onwership

4.1 Models

In this section, we primarily discuss two models. One serves as a benchmark, focusing
on the key modifications required to introduce ownership. The other model incorporates a
keeping-rate setting based on the previous one, aiming to incentivize AI agents to engage in
productive activities.

4.1.1 Onwership Models

First, AI agents can possess two types of ownership: ownership by society or ownership
by an human agent. Ownership by society implies that the AI agent is publicly owned, so all
of its income goes directly into taxation and then goes through transfer payments. In contrast,
ownership by an human agent signifies that the income belongs to that specific human agent.
Then, we need to make crucial modifications to the Agent and Planner section of the model.
Specifically, we need to clarify the specific timing of when the AI agent transfers income to
the owner which is during the taxation period(Ttax), but prior to the imposition of taxes, the AI
agent transfers all of its income to its owner. which:

Incomei,nTtax =
nTtax∑

t=(n−1)Ttax

(xci,t − xci,t−1) +
nTtax∑

t=(n−1)Ttax

(xcibelong ,t
− xcibelong ,t−1)

with i ∈ Human Agent

ibelong ∈ AI Agent

(8)

Furthermore, during taxation, since the AI agents are now owned by human agents and its
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productivities are also belong to society/human, the planner will not collect taxes from the AI
itself, but only from the human owner. Similarly, transfer payments will only be considered for
human agents. Consequently, in this environment, AI agents effectively becomemere production
tools.

max
τ

Productivity(Human, τ)× Equality(Human, τ)op∼Γ (9)

4.1.2 Keeping-Rate Models

For the Keeping-Rate model, our primary assumption is that AI agents do not give all of
their income to their owners. From an economic intuition, if AI agents have no investments or
income of their own, their motivation would be extremely low, rendering the ownership system
ineffective. The introduction of a Keeping-Rate(ζ) setting is akin to making an investment,
whether it be for the "maintenance" or "innovation" of AI agents, which can generate a certain
utility for them. Consequently, the formula for agents income is updated as follows:

Incomei,Ttax =
nTtax∑

t=(n−1)Ttax

(xci,t − xci,t−1) + (1− ζ)
nTtax∑

t=(n−1)Ttax

(xcibelong ,t
− xcibelong ,t−1)

Incomej,Ttax = ζ
nTtax∑

t=(n−1)Ttax

(xcj,t − xcj,t−1)

with i ∈ Human Agent

ibelong, j ∈ AI Agent

(10)

Moreover, the question of who determines this Keeping-Rate is worthy of discussion.
Firstly, AI agents cannot be allowed to decide their own Keeping-Rate, as the outcome would
converge entirely to 1, the AI agents would maximize their own utility. The decision, therefore,
falls to the owners or social planners. Currently, we are discussing having social planners
determine the Keeping-Rate, with the goal of maximizing social welfare. Hence, social planners
need to optimize two objectives simultaneously: optimal taxation and optimal social Keeping-
Rate.

max
τ

Productivity(Human, τ, ζ)× Equality(Human, τ, ζ)op∼Γ (11)

Our model becomes more complex at this point. Taxation affects overall social inequality and
labor motivation, while the Keeping-Rate impacts the work enthusiasm of AI agents, thereby
influencing the overall productivity of society and subsequent transfer payments.

Pesudo Code We also provide a pseudo-code in 2.
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Algorithm 2: Keeping-Rate Model Pesudo Code
Input: Episode Length T , Tax Frequence Ttax, Keeping-Rate ζ
Output: Planner’s policy πτ (·; Φτ

p) and πζ(·; Φζ
p), Agent’s policy π(·; Φ)

1 Initialize Φτ,ζ
p ← Φτ,ζ

p,0,Φ← Φ0

2 for Each Training Episode do
3 World(s, o, op)←World(s0, o0, op,0) /* Reset World */
4 τ ∼ π(·|s, op; Φτ

p) /* Sample Planner Taxation */
5 ζ ∼ π(·|s, op; Φζ

p) /* Sample Keeping-Rate */
// Sampling

6 for timestep = 1 to T do
// Agent Inner Loop

7 ai ∼ π(·|s, o; Φ) /* Sample agent actions */
8 s′, o′, o′p, r

′, r′p ← World(a, τ, ζ|s, o, op).step /* get reward */
9

// Planner Outer Loop
10 if t mod Ttax == Ttax − 1 then
11 s′, o′, o′p, r

′, r′p ← World(τ, ζ|s′, op).taxation /* Apply taxes */
12 end
13 if t mod Ttax == 0 then
14 τ ∼ π(·|s′, o′p; Φτ

p) /* Update Planner Taxation */
15 ζ ∼ π(·|s′, o′p; Φζ

p) /* Update Keeping-Rate */
16 end
17

// Save sample data
18 D ← D

⋃
{(s, o, a, r, o′, s′)}

19 Dp ← Dp

⋃
{(s, op, τ, rp, s′, o′p)}

20 end
21

// Training
22 Update Φτ,ζ

p ,Φ using the PPO algorithm based on data D,Dp.
23 end

4.2 Experments

In this part, based on 4H4A Model, we explore 4 different environments for ownership
Model. The experiments are labeled as follows to indicate the specific conditions under investi-
gation:

Ownership Model
• 4B_each: Each human agent has a AI agent.
• 2B2S: Two human agent each has a AI agent and another two AI agent is belong to society.
• 4S: All AI agent is belong to society.
• 4B_bias: A human agent has two AI agents, two human agent each has a AI agent and
one human agent has not AI agent.
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Also, we explore 4 different environments for Keeping-Rate Model.

Keeping-Rate Model
• 2B2S_same: All AI agents have a same Keeping-Rate
• 2B2S_cate: Different category of AI agents(belong to human/society) have different
Keeping-Rate.

• 2B2S_private: AI agents belonging to society have a common Keeping-Rate and AI
agents belonging to humans each have a private Keeping-Rate.

• 4B_private: All AI agents each have a private Keeping-Rate
• 4S_same: All AI agents have a same Keeping-Rate

4.3 The Impact of Ownership

Figure 11: The image represents the cumulative pre-tax income of agents across all ownership models.
The horizontal axis indicates the number of periods, while the vertical axis represents the coin stock.

As evident from the Figure11, due to the crude introduction of ownership, the AI agent
transfers all of its income to its owner. Consequently, the AI individuals have no incentive to
perform any additional actions because theywould be giving away all of their income. Therefore,
themulti-agent environment with 4A4H degrades into one involving only 4 human agents, where
income disparities among agents depend on their endowments and random parameters. From
the results, it is apparent that the graphical outcomes of the four models are almost identical.

Furthermore, as observed from Figures 12 and 13, the net resource purchases of AI agents
are close to zero but negative, indicating that they are selling resources, with very small quantities
being sold. Therefore, they gradually become a low-level efficiency tool primarily engaged in
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Figure 12: Net sood buy(buy - sell) number

Figure 13: Net stone buy(buy - sell) number
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collecting and trading small amounts of resources, and their main source of income is selling the
resources they collect. Additionally, due to the low efficiency of AI tools in collecting resources,
a specific human agent has emerged to focus on resource collection.

The introduction of an ownership system where AI agents give everything to their owners
significantly reduces the labor motivation of AI agents. At this point, AI agents are more like
low-level tool substitutes, mainly used for resource collection and gathering. Giving everyone
their own AI agents is equivalent to providing them with a resource collector, enabling them
to engage in more construction activities and optimizing social welfare (compared to other
ownership systems). Realistically speaking, in the initial stages of substitution, there is a
tendency to distribute these "tools" to individuals for use rather than for public use, as unclear
ownership in public use does not incentivize agents.

4.4 The Impact of Keeping-Rate

Figure 14: Result for Keeping-Rate Model 2B2S

From the Figure 14 and 15, it is easy to observe that the Keeping-Rate continuously opti-
mizes as time steps progress. Therefore, due to the significant randomness in single experiments,
averaging multiple experiments can effectively reduce randomness and provide a better under-
standing of the equilibrium trend of the Keeping-Rate. After introducing the Keeping-Rate,
AI agents have significantly increased their labor enthusiasm. The decrease in human agents’
income is attributed to the crowding-out effect of AI agents and the "lying flat" phenomenon
caused by more AI agents’ ownership payments. The existence of the Keeping-Rate is also quite
interesting. Specifically, in the early stages, the Keeping-Rate is relatively high, allowing AI
agents’ incomes to continue growing. However, after reaching a certain threshold, planners tend
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Figure 15: Result for Keeping-Rate Model 4B/4S

to keep AI agents at a certain wealth level for production and only take their new additions. This
approach not only provides AI agents with a certain degree of utility but also maximizes their
labor enthusiasm and productivity on the margin.

Table 3: The eq. Keeping-Rate for each Model

Model Name AI Agents cate Keeping-Rate
2B2S_same 2 private + 2 society 0.714
2B2S_cate 2 private 0.711

2 society 0.669
2B2S_private 2 private [0.514, 0.829]

2 society 0.581
4B_private 4 private [0.547, 0.552, 0.782, 0.812]
4S_same 4 society 0.762

Optimal taxation and Social Welfare Based on the Figure 16, it is evident that tax brackets
are generally high across almost all income ranges. This is primarily due to the significant
increase in agents incomes after the introduction of ownership (regardless of whether Keeping-
Rate are implemented or not, as the absence of Keeping-Rate causes the model to revert
to an environment with only 4 human agents, resulting in less competition for resources).
Consequently, incomes mostly fall within the higher tax brackets, affecting all sectors during
training. In this context, taxation serves primarily to ensure social equity rather than motivate
agents to engage in productive activities. This is because taxation has minimal impact on the
productivity incentives of AI agents.

In this scenario, the introduction of the Keeping-Rate mechanism proves effective. It
stimulates AI agents to engage in labor, ultimately enhancing social welfare. Simultaneously,
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Figure 16: Trained optimized taxation in both ownership and Keeping-Rate Model(4B)

Figure 17: Final Social Welfare for all Models

efficient AI skills can substitute for some human labor without reducing individual utility,
allowing people to enjoy more leisure time. This aligns with a future societal goal: to replace
most repetitive tasks with artificial intelligence and distribute the value created by AI to everyone
through various transfer payments, enabling individuals to devote more time to pursuits of
spiritual value.

5 Conclusion

In this paper, we empirically study the economic impacts of introducing AI in a Human-AI
hybrid environment we constructed. The environment is built on a multi-agent framework and
solved through reinforcement learning. We analyze how the planner should implement policy
in this Human-AI hybrid environment to maximize social welfare. The key feature in our
environment is that, AI can share skills and knowledge in real-time, but humans accumulate
human capital through working experience.

From the agents’ perspective, we find that AI increases productivity and brings higher
output for the whole society. However, AI agents also crowd out human agents in labor markets.
The human worker with higher or lower initial skills experiences a lesser degree of crowding
out. In addition, the planner can provide more transfers to human agents. This enables human
agents to a propensity to opt for work withdrawal and further intensifies the crowding-out effect.
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From the planner’s perspective, the presence of AI can improve both equality and pro-
ductivity. This can primarily be attributed to two factors: 1) The effective management of
the Human-AI hybrid environment by the social planner through proper taxation; and 2) The
ability of AI agents sharing knowledge through web and internet technology, enabling them
to consistently operate at high skill levels. Specifically, the implementation of effective tax
systems allows us to leverage the productivity advantages brought by AI while addressing its
negative impact, such as the crowding-out effect. Consequently, this leads to enhancements in
both equality and productivity. It also reveals the pivotal role of web and internet technology as
a driving force for continuous progress and innovation in various other fields.

And we then discuess the Ownership part, here, we find that: The established Keeping-
Rate can stimulate the labor enthusiasm of AI agents. At this point, AI agents can utilize their
informational advantages to engage in high-skilled labor substitution (such as construction)
through learning. For high-skill substitution, adopting a communal approach can enhance its
effectiveness, providing AI agents with more freedom for development.

Combining the conclusions from the previous sections, we can draw an insight:
1. When AI substitution technology is in its early stages, planners should tend to grant this

technology to individuals or firms. These technologies can replace some low-skilled labor,
freeing up individuals to engage in more advanced labor and bringing more social output
to enhance social welfare.

2. When AI technology reaches a high level of skill substitution, if it remains within the firm,
it can still bring some optimization. However, if it is merged into a communal system and
opened up to every individual in society, this technology can significantly replace human
labor, liberating people from heavy workloads and allowing them to engage in lighter
tasks. Furthermore, through reasonable taxation and economic measures, this communal
output can be distributed fairly to every individual, providing more income for all and
increasing overall social welfare.
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