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Abstract
Solving high-dimensional Heterogeneous Agent Models (HAMs) is challenged
by the curse of dimensionality and limitations of existing methods. We in-
troduce Deep Adversarial Bellman Solver (DABS), a unified deep learning
solver directly targeting the Bellman equation using an adversarial frame-
work inspired by Generative Adversarial Networks (GAN). Key innovations
ensuring robustness and efficiency include stable multi-shock expectation es-
timation, constrained data simulation, implicit general equilibrium handling,
and experience replay. We validate DABS on the Krusell-Smith model, ex-
tensions with continuous/discrete labor supply, and Overlapping Generations
(OLG) models, demonstrating its effectiveness, robustness, and broad appli-
cability with the same core algorithm. Our method yields accurate, smooth
policy functions, shows improved stability and tail-behavior compared to
benchmarks, and provides a powerful, general, and computationally feasible
approach for complex HAMs.
Keywords: Heterogeneous Agent Models, Deep Learning, Adversarial
Training, Dynamic Programming, Computational Economics, Function
Approximation

1. Introduction

In contemporary macroeconomic research, the analytical framework based
on heterogeneous agents model (HAM) has gradually established its signifi-
cance. Agent heterogeneity in income endowments, risk preferences, and life-
cycle stages has become a core element in analyzing real-world issues such as
wealth distribution, social security policies, and monetary policy transmission
mechanisms. The evolution of heterogeneous modeling has been intricately
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intertwined with the deepening of macroeconomic theory, demonstrating a
stepwise expansion of heterogeneity dimensions: Aiyagari (1994) constructed
a benchmark analytical framework for heterogeneous savings behavior under
incomplete markets by endogenizing individual labor income shocks; Krusell
and Smith (1998) further extended the heterogeneity dimensions, achiev-
ing the first bidirectional coupling between individual capital accumulation
and aggregate productivity shocks, and revealing the asymmetric effects of
wealth distribution on shock propagation; the HANK (Kaplan et al., 2018)
model characterized micro-level transmission mechanisms of monetary pol-
icy shocks by modeling household sector heterogeneity (Kaplan et al., 2018).
The deepening of heterogeneous modeling has made explicit the micro-macro
interaction mechanisms that traditional representative agent models strug-
gled to capture.

However, solving heterogeneous models faces a fundamental challenge -
the curse of dimensionality. When models include multiple heterogeneous
state spaces, the dimensionality of the state space grows exponentially with
the number of grid points. As shown in Table 1, traditional discretization
methods require millions of grid points for 6-dimensional states, with com-
putation time exceeding one week; when the dimensionality increases to 20,
the time required would surpass the age of the universe.

Numerous approaches have been proposed to address these challenges: di-
mensionality reduction techniques such as sparse grids (Smolyak grids) and
active subspace methods (Judd et al., 2014); enhancing grid precision through
the EGM algorithm (Carroll, 2006); and accelerating solution processes us-
ing engineering methods like OpenMP/MPI. However, these methods only
alleviate the curse of dimensionality rather than fundamentally resolving it
(Maliar and Maliar, 2013; Winberry, 2018).

In recent years, artificial intelligence (AI) technology has provided new
insights for overcoming this dilemma. Deep neural networks demonstrate
unique advantages through three mechanisms: Implicit dimensionality re-
duction, Adaptive learning and Nonlinear representation. Notably, Physics-
Informed Neural Networks (PINN) have made breakthroughs in solving com-
plex dynamical systems. Raissi et al. (2019) successfully solved highly non-
linear problems like turbulent flow fields by embedding the Navier-Stokes
equations into loss functions, verifying the isomorphism between differen-
tial equation solutions and deep learning architectures. This technological
breakthrough offers significant insights for solving economic models: Bell-
man equations in macro models essentially form high-dimensional dynamic
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State Variables (Dimensions) Points Time to Solution
1 10 10 sec
2 100 ∼ 1.6 min
3 1,000 ∼ 16 mins
4 10,000 ∼ 2.7 hours
5 100,000 ∼ 1.1 days
6 1,000,000 ∼ 1.6 weeks
... ... ...
20 1e20 ∼ 3 trillion years

Optimizer
Dimension reduction Deal with Points High-performance computing
Exploit symmetries e.g., via (Smolyak/adpative) Reduces time to solution,

via the active subspace method sparse grids but not the problem size
EGM MPI/OpenMP

Table 1: What is high-dimensional?

programming problems, which share mathematical isomorphism with Policy
Evaluation in reinforcement learning - the former requires value functions to
satisfy recursive optimality conditions, while the latter approximates optimal
policies through temporal difference learning. This isomorphism enables the
transfer of deep reinforcement learning techniques such as Generative Ad-
versarial Networks (GAN , Goodfellow et al. (2020)) and Experience Replay
to economic model solutions, opening a new path for integrating dynamic
programming with deep learning.

Current AI-based discrete-time approaches still have several limitations:
Euler equation methods depend on explicit first-order conditions which offer
fast convergence but may lack closed-form solutions for problems involving
non-convex constraints (such as borrowing limits), discrete choices (like labor
participation decisions), or multi-asset portfolios. Bellman equation methods
(Maliar et al., 2021) have theoretical universality but face some practical
bottlenecks: non-smooth jumps in policy functions, and error amplification
in distribution tails. Existing stable solution methods fail to demonstrate
the broad applicability, remaining model-specific. This creates a dilemma
in discrete-time methods where stable approaches lack model generalization
while general methods suffer from convergence instability.

This study achieves systematic breakthroughs based on the framework of
Maliar et al. (2021), maintaining one of its core paradigm of solving HAM
via Bellman equations. Then innovate the methodological system: First
constructs a dual network through parameterized value and policy functions,
bypassing Euler equations to directly optimize Bellman residuals; secondly
introduces Generative Adversarial Network (GAN) training method, trans-
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forming traditional alternating iteration strategies into minmax adversarial
optimization mechanisms - the policy network acts as a generator maximiz-
ing intertemporal utility to produce candidate decisions, and the value net-
work serves as a discriminator minimizing Bellman residuals to dynamically
correct value estimates, forming a self-correcting dynamic equilibrium sys-
tem; finally addresses policy function instability and non-smoothness issues
in original methods using multi-set expectation sampling, prioritized expe-
rience replay (Schaul et al., 2015), and simulation-based data generation to
stabilize model training.

We propose the Deep Adversarial Bellman Solver (DABS). Compared to
original methods, DABS ensures better training stability and generalization.
Applying our approach to the traditional Krusell-Smith model resolves tail
bias and function smoothness compared to Maliar et al. (2021). Additionally,
we validate its generalization by transferring the method to models with labor
choices (both continuous and discrete), simple OLG models, and OLG models
with housing decisions.

Literature Review. Before applying AI methods to solve HAM, the economics
literature traditionally employed three main approaches: one method esti-
mates the evolution of moment conditions for key state variables (Krusell and
Smith, 1998; Den Haan, 1997; Fernández-Villaverde et al., 2023); another uses
perturbation expansions on aggregate states followed by matrix algebra solu-
tions (Reiter, 2002, 2009, 2010; Winberry, 2018); the third approach applies
low-dimensional projections to distributions (Prohl, 2017; Schaab, 2020).

Existing AI-based HAM solutions primarily develop within discrete and
continuous time frameworks. Discrete-time models partition decision cycles
by time steps, with traditional solutions centered on dynamic programming
that iteratively solves optimal decisions period-by-period via value function
iteration or policy iteration. Maliar et al. (2021)’s HAM framework solves
infinite-horizon problems using simulated data, while Azinovic et al. (2022)
develop specialized architectures for Overlapping Generations (OLG) mod-
els and Han et al. (2021) solve HAM by period simulation. Continuous-time
models directly describe instantaneous state variable changes through differ-
ential equations, with initial methods applying deep learning to solve differen-
tial equations in continuous-time economic models (Duarte, 2018; Gopalakr-
ishna, 2021; Fernández-Villaverde et al., 2020; Sauzet, 2021). A landmark
subsequent paper (Achdou et al., 2022) transformed continuous-time prob-
lems into Mean Field Game (MFG) systems (Lasry and Lions, 2007), jointly
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solving Hamilton-Jacobi-Bellman equations with Kolmogorov forward equa-
tions (or their transformed master equations). New literature focuses on
solving continuous-time problems within this framework, such as Gu et al.
(2023); Payne et al. (2025); Gopalakrishna et al. (2024). Additionally, hy-
brid approaches exist between discrete and continuous time, primarily using
discrete-time approximations to handle forward-backward stochastic differ-
ential equations (Han et al., 2018; Huang, 2022). Beyond deep learning,
some literature applies reinforcement learning methods to these problems
(Hill et al., 2021), while another stream attempts model estimation using
deep learning (Kase et al., 2022).

2. Economic Model
We consider a class of dynamic Markov economic models with time-

invariant decision functions. An agent (consumer, firm, government, central
bank, etc.) solves a canonical intertemporal optimization problem

2.1. Environment
An exogenous shock state ηt ∈ Rnη follows a Markov process with:

ηt+1 =M(ηt, εt) (1)
where εt represents i,i,d random disturbances(e.g., technological shocks,

labor shocks). This process economically implies that the current macroeco-
nomic state or agent state ηt(e.g., aggregate productivity or personal produc-
tivity) and random perturbation εt jointly determine the next-period state
ηt+1 , capturing the persistence of shocks.

An endogenous agent state st driven by agent decisions xt (e.g., consump-
tion, investment) and future shocks ηt+1:

st+1 = S(st, ηb, xt, ηt+1) (2)
where xt depends on personal states st, shocks ηt with

xt = X(st, ηt) (3)
An optimization problem can be described as:

E0

[
∞∑
t=0

βtu(st, ηt, xt)

]
(4)

whereβ ∈ (0, 1)is the discount factor reflecting intertemporal preference
trade-offs, u(·)is the utility function.
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2.2. Optimization problem
The agent’s decision-making behavior is characterized by the policy func-

tion ψ : RNs ×RNη → RNx such that

xt = ψ(st, ηt) ∈ X(st, ηt) (5)

Directly finding the optimal function ψ is extremely difficult in high-
dimensional problems. To render the optimization problem more tractable,
we parameterize the policy function by θ1 ∈ Θ1, representing the policy
function as ψ(·; θ1). Here, θ1 encompasses all the parameters that define
the specific form of the policy function. Different values of θ1 correspond to
different decision rules.

After parameterizing the policy function, the original problem of find-
ing the optimal decision rule transforms into an optimization problem of
searching for the optimal parameter θ∗1 ∈ Θ1. ψ(s; θ∗1), leads to a sequence
of decisions {xit}∞t=0 starting from any possible initial state (si0, η

i
s), which

maximizes the agent’s expected lifetime utility:

{xit}∞t=0 = argmaxE0

[
∞∑
t=0

βtu(st, ηt, xt); (s
i
0, η

i
0)

]
(6)

xit = ψ(sit, η
i
t; θ

∗
1) ∈ X(sit, η

i
t) (7)

Here, E denotes the expectation taken over all future uncertainties based
on the initial information, β is the discount factor reflecting time preference.

Next, we briefly review traditional methods for solving such dynamic
programing problems. These methods typically do not directly search for
the parameter θ1 but instead leverage the recursive structure of the problem,
particularly the Bellman equation (Value function is parametered by θ2):

V (s, η; θ2) = max
{x}

(u(s, η, x) + βEV (s′, η′; θ2)) (8)

where s′ is the next-period state obtained according to the state transition
function S(s, η, x, η′).

Traditional bellman-based methods such as Value Function Iteration (VFI),
iteratively update the value function V (·) and the policy function ψ(·) until
convergence which:
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Policy Improvement: Given Value functionV (s, η; θ̂2), solve�

x(s, η) = ψ(s, η; θ1) = argmax{u(s, η, x) + βE[V (s′, η′; θ̂2)]} (9)

This step is essentially local optimization - under the existing value func-
tion, find the decision rule that maximizes the sum of current and future
utilities.

Value Update: Based on latest ψ(s, η; θ̂1), update value function�

V (s, η; θ2) = (u(s, η, ψ(s, η; θ̂1)) + βEV (s′, η′; θ2)) (10)

This step substitutes the latest policy function into the Bellman equation
and updates the value function by minimizing the Bellman residual.

Convergence�Iterate until the difference in value function V (k+1) −
V (k) < ϵ. According to the contraction mapping theorem (Stokey and
Lucas Jr, 1989), under the condition that the utility function is bounded and
the discount factor β < 1, this iterative process must converge to a unique
solution.

2.3. General Equilibrium
Agents make optical decisions based on macroeconomic states (interest

rate r and wage w). In a closed economic framework, these aggregate states
are not externally imposed but are determined by a large number of hetero-
geneous agents. To ensure consistency between agent optimal choices and
aggregate economic satates, thereby providing a complete description of the
entire economic system, we must introduce market clearing conditions and
the model’s General Equilibrium (GE).

Distribution Dynamics. Let µt represent the distribution function of agent
states within the population at time t. The evolution of this distribution is
controlled by a transition operator Γ:

µt+1 = Γ(µt, ψ, ηt, ηt+1) (11)

Intuitively, Γ is the set of agent state transition equation
∫
S(·)dµ.

Aggregate State Update and Market Clearing. The update function of aggre-
gatye state sgent+1:

sgent+1 = Ξ

(
sgent ,

∫
sdµt,

∫
ηdµt

)
(12)

Where Ξ is the market clearance condition, such as the total capital
Kt =

∫
atdµt, and the interest rate rt = ∂F (·)

∂Kt
− δ.
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Definition of General Equilibrium. A (recursive) General Equilibrium con-
sists of a set of mutually consistent objects: {ψ(s, η; θ∗1), V (s, ηθ∗2), s

∗
gen}, such

that:

• Individual Optimization: Given the aggregate states sgen, the agent
policy ψ(s, η; θ∗1) and value function V (s, η; θ∗2) are the solution to the
agent’s lifetime utility maximization problem.

• Market Clearing: Aggregate states s∗gen satisify the market clearing
conditions Ξ.

• Stationary Distribution: In a steady-state equilibrium, the state dis-
tribution µ remains constant under the influence transition operator
Γ.

3. Deep Learning Approach

3.1. Adversarial Training: A GAN-Inspired Solution Framework
Generative Adversarial Networks (GAN), introduced by Goodfellow et al.

(2020), are a powerful class of deep learning models. Their core idea involves
the competition and co-learning of two neural networks: a Generator and a
Discriminator, aimed at generating realistic data. The Generator’s objective
is to learn the distribution of real data and produce ”fake” data samples that
are indistinguishable from the real ones. The Discriminator’s objective is to
accurately determine whether an input sample comes from the real dataset
or is a ”fake” sample generated by the Generator. In this ”zero-sum game,”
the Generator strives to ”fool” the Discriminator, while the Discriminator en-
deavors to ”detect” the Generator’s fakes. Through this adversarial training
process, ideally, the Generator eventually produces highly realistic samples,
and the Discriminator can no longer effectively distinguish between real and
fake, signifying that the system has reached a Nash equilibrium.

3.1.1. Migrating to Economic Model Solving
Solving dynamic economic models essentially involves finding an optimal

policy function ψ and the corresponding value function V that satisfy the
Bellman equation. The Bellman equation itself embodies an intrinsic ”con-
sistency” or ”optimality” check: given a value function V , the optimal policy
ψ should maximize the sum of current utility and expected future value;
conversely, given a policy ψ, the true value function V should accurately
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reflect the total expected utility derived from following that policy. This
interdependent relationship between ”generation” (of policy) and ”evalua-
tion” (of value) bears a profound structural similarity (isomorphism) to the
adversarial relationship between the Generator and Discriminator in GAN.

We can leverage the adversarial training framework of GANs by trans-
forming the process of finding the optimal policy and value functions into a
game between two neural networks.

Policy Network - Playing the Generator Role. The objective of policy net-
work is to generate the ”optimal” decision (policy) ψ(s, η; θ1). ”Optimal” here
means that, under the evaluation of the current Value Network V (s, η; θ̂2) ,
this policy maximizes the expected lifetime utility. Just as the GAN Gener-
ator tries to produce ”realistic” samples to fool the Discriminator, the Policy
Network attempts to generate decision rules that will receive a ”high score”
(high expected utility) from the Value Network (the evaluator).

max
θ1

(u(s, η, ψ(s, η; θ1)) + βEV (s′, η′; θ̂2)) (13)

where s′ is the next-period state resulting from the current state s, policy
ψ(s, η; θ1), and next-period shock η′. The expectation E is taken over the fu-
ture shock η′. Note that when performing this maximization, the parameters
θ2 of the Value Network V are held fixed.

Value Network - Playing the Discriminator Role. The objective of value net-
work is to accurately estimate the true value of each state (s, η) under a
given policy ψ(s, η; θ̂1), which is, to minimize the Bellman residual. The
Bellman residual measures the discrepancy between the current value esti-
mate V (s, η; θ2) and the expected total utility u+βV ′ obtained after following
the current policy for one step. Just as the GAN Discriminator tries to accu-
rately distinguish ”real” (values satisfying the Bellman equation) from ”fake”
(values that don’t), the Value Network attempts to correctly assess the true
long-term value associated with the policy proposed by the Policy Network,
rejecting ”biased” valuations.

LBellman =
(
V (s, η; θ2)−

(
u(s, η, ψ(s; θ̂1)) + βEV (s′, η; θ2)

))2
(14)

When performing this minimization, the parameters θ1 of the Policy Net-
work ψ are held fixed. The term inside the parentheses, V − (u + βV ′), is
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precisely the Bellman residual. Minimizing its squared expectation forces the
Value Network V to satisfy the Bellman equation.

3.1.2. Overall Objective of Adversarial Training
The entire adversarial training process can be viewed as solving a min-

max problem. While the specific formulation might differ slightly from the
original GAN, the core adversarial spirit remains. We can interpret it as by:

min
θ2

max
θ1
L(θ1, θ2) =

min
θ2


V (s, η; θ2)−max

θ1
(u(s, η, ψ(s, η; θ1)) + βEV (s′, η′; θ2))︸ ︷︷ ︸

Maximize utility︸ ︷︷ ︸
Minimize Bellman residual



2

(15)

Here, the objective function L aims to find (ψ, V ) pairs that satisfy the
Bellman equation. One interpretation is that maxθ1 drives the policy network
to find high-return policies, while minθ2 , by minimizing the Bellman error,
penalizes value estimates inconsistent with the dynamics, thereby indirectly
constraining the ”feasibility” or ”truthfulness” of the final policy.

3.2. Neural Networks as Universal Approximators
In the previous subsection, we introduced the GAN-inspired adversarial

training framework, which solves the Bellman equation through the compe-
tition between a Policy Network (Generator) and a Value Network (Discrim-
inator). To implement this framework, we require powerful function approx-
imation tools capable of representing the high-dimensional, non-linear policy
function ψ and value function V .

We choose to approximate the policy ψ and the value function V using
Deep Neural Networks (DNNs) instead of conventional methods like polyno-
mial functions or other interpolation techniques. Neural networks offer sig-
nificant advantages when dealing with high-dimensional economic models,
particularly those involving complex interactions and constraints, making
them a preferable choice:
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• Linear Scalability: Traditional grid-based methods or polynomial in-
terpolation suffer from the ”curse of dimensionality,” where compu-
tational and memory requirements grow exponentially with the state
space dimension. In contrast, the number of parameters in a neural
network typically grows only linearly with the dimensionality.

• Robustness and Feature Learning: Neural networks exhibit good ro-
bustness to multicollinearity among input features. More importantly,
through their hierarchical structure (hidden layers), they can auto-
matically learn underlying structures and correlations within the data,
performing effective feature extraction or implicit dimensionality re-
duction, capturing complex relationships between state variables (see
section 3.3.3).

• Flexibility for Fitting Non-linear Environments: Economic models of-
ten feature complex non-linearities, such as kinks arising from con-
straints (e.g., borrowing limits, non-negativity), discontinuities or dis-
crete choices resulting from institutions or decisions (e.g., labor force
participation), and potential regime switching. Neural networks, espe-
cially those employing non-linear activation functions (like ReLU), are
exceptionally well-suited for fitting such highly non-linear functions,
enabling them to capture these intricate economic behaviors.

The basic structure of a neural network consists of interconnected cells.
Each cell receives inputs from other cells or environment, processes them
(typically via a weighted matrix θ(1,2)i followed by an activation function a1,2),
and transmits the processed signal to other connected cells . A typical multi-
layer network (see Figure 1 ) includes an input layer, one or more hidden
layers, and an output layer. The hidden layers extract more abstract and
useful representations of the information by applying a series of non-linear
transformations to the input signals, endowing neural networks with greater
expressive power and flexibility compared to methods like polynomials that
establish a direct input-output relationship.

Leveraging the powerful approximation capabilities of neural networks,
we replace the key functions in our theoretical model—the policy function ψ
and the value function V with specific neural network architectures:

Policy Network ψ(s, η; θ1). This network takes the state variables (s, η) as
input and outputs the decision variable x. Its parameters are determined by
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Fig. 1: A neural network with one hidden layer.

θ1 (containing weights W η
i and biases bηi in i th layer). For example, if the

policy is a consumption rate with consumption
wealth ∈ [0, 1], a Sigmoid activation

function can be used in the output layer to ensure the output satisfies the
constraint:

ψ(s, η; θ1) = Sigmod (W η
2 · Tanh(W

η
1 [s, η] + bη1) + bη2) (16)

Where NN has only one hidden layers and typically use activation functions
like Tanh to introduce non-linearity.

Value Network V (s, η; θ2). This network also takes the state variables (s, η)
as input and outputs an estimate of the value for that state. Its parameters
are determined by θ2. Since value functions are often unbounded, a linear
activation function is commonly used in the output layer:

V (s, η; θ2) = W V
2 · ReLU(W V

1 [s, η] + bV1 ) + bV2 (17)

By selecting appropriate network architectures and activation functions,
NNs can be designed to automatically satisfy economic constraints. For
instance, in a model with non-negativity wealth constraint w ≥ 0 and con-
sumption constraint c ∈ [0, w], parameterizing the decision as the consump-
tion ratio c

w
and using a Sigmoid output automatically ensures c

w
∈ [0, 1],

thereby satisfying 0 ≤ c ≤ w without needing to handle these boundary
conditions manually during optimization.
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3.3. Training Optimization and Stability Techniques
3.3.1. All-in-One (AIO) Expectation and Paired Shock Sampling

When handling the expectation term E[V (s′, η′)] in the Bellman equation
for dynamic models, exact computation is typically infeasible, necessitating
Monte Carlo methods. The All-in-One (AIO) concept introduced by Maliar
et al. (2021) approximates this expectation by drawing a single pair of inde-
pendent shocks, balancing computational efficiency and estimation accuracy.
We extend this method by adopting a Multi-Pair Shock Sampling strategy
to further enhance the stability and accuracy of the estimation. Specifically,
instead of being limited to a single shock pair, we independently draw M
pairs of future shock. Using multiple shock pairs provides a more robust
expectation estimate and reduces the variance of the Monte Carlo estima-
tion, thereby greatly improving the stability of the training process. Thus
we have:

max
θ1

(
u(s, η, ψ(s, η|θ1)) + β

1

M

M∑
m

(Vϵη1,m(s
′, η′|θ2) + Vϵη2,m(s

′, η′|θ2))

)
(18)

LBellman =
1

M

M∑
m

[
(
V (s, η; θ2)−

(
u(s, η, ψ(s, η; θ̂1)) + βVϵ1,m(s

′, η′; θ2)
))

(19)

×
(
V (s, η; θ2)−

(
u(s, η, ψ(s, η; θ̂1)) + βVϵ2,m(s

′, η′; θ2)
))

]

(20)

Although using M pairs requires more computation compared to just one
pair, which might have been challenging due to computational limitations
when the original method, we overcome this bottleneck by leveraging the
powerful parallel processing capabilities of modern GPUs.

3.3.2. Constrained Parallel Simulation for Data Generation
To supply high-quality data that aligns with the model’s intrinsic logic

for neural network training, we employ a simulation-based data generation
method. The core of this approach involves using the currently trained policy
network ψ to drive the dynamic evolution of the economy, thereby generating
(state, policy, next state) samples. Instead of simulating a single representa-
tive economy, we simulate k independent virtual economies in parallel, each
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Fig. 2: Ergodic set of a neoclassical growth model.

populated with ℓ heterogeneous agents. At each time step, agents make deci-
sions according to the rules dictated by the policy network, and their states
transition based on relevant economic laws or model equations, such as the
budget constraint.

A crucial implementation detail is the strict enforcement of these eco-
nomic constraints during the simulation process, ensuring all generated sam-
ple points reside within the economically feasible domain. This avoids mean-
ingless or impossible states that could arise from random sampling and
guarantees data validity. The primary advantage of this simulation-based
method, compared to random sampling detached from model dynamics, is
that the generated data naturally reflects the model’s dynamic properties
and endogenous interactions, concentrating on the regions of the state space
that agents actually experience (i.e., the model’s ergodic set, see Figure 2).

3.3.3. Implicit Market Clearing via Neural Networks
For models requiring a general equilibrium solution, we employ the strat-

egy of implicit market clearing encoded within the neural network to avoid
the costly nested loops typical of traditional methods. By directly including
key aggregate information (such as aggregate capital K, distribution mo-
ments

∫
adµ, aggregate shocks z) alongside agent states as inputs to the

policy and value networks, and optimizing within the end-to-end adversar-
ial framework, the neural network automatically learns the dependence of
agent decisions on aggregate variables and how the macro state influences
the agent’s environment (e.g., interest rate). This design implicitly embeds
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market clearing conditions into the learning process, allowing for the simulta-
neous coordination of micro-level optimization and macro-level consistency
within a single network pass and update, thereby substantially enhancing
solution efficiency.

3.3.4. Experience Replay
To overcome issues related to temporal correlations in sequentially sim-

ulated data, improve sample efficiency, and enhance training stability, we
incorporate an Experience Replay mechanism. State transition data gener-
ated during simulations are continuously stored in a dynamic memory pool.
During training, mini-batches are randomly sampled from this pool for gra-
dient updates. This random resampling breaks the temporal dependencies of
the data, leading to more stable training and reducing short-term policy oscil-
lations. Furthermore, by mixing data stored from different historical periods
and economic states, experience replay enhances the model’s generalization
capabilities, enabling it to learn from a more diverse set of experiences. This
mechanism also effectively decouples the data generation and model training
steps, facilitating parallel data processing and model updates on GPUs, thus
accelerating the overall training pipeline.

4. Application

4.1. Krusell-Smith Mode
4.1.1. Model Setup

The model features an economy composed of ℓ heterogeneous agents who
share identical fundamental preferences but differ in their productivity levels
and asset holdings.

Each agent i chooses consumption cit and beginning-of-next-period assets
(determined by savings kit = wit − cit) to maximize their expected lifetime
CRRA utility:

max
{cit,kit+1}∞t=0

E0

[
∞∑
t=0

βt
(cit)

1−γ − 1

1− γ

]
s.t. wit+1 = Rt+1k

i
t+1 +Wt+1e

yit+1

cit ≤ wit
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Here, wit is agent i’s cash-on-hand/wealth at the beginning of period t, yit
is their log labor productivity, Rt is the gross return on assets (1+rt), and Wt

is the wage rate. Agent provides one unit of labor and theit log productivity
yit follows an exogenous AR(1) process:

yit+1 = ρyy
i
t + σyϵ

i
t+1, with ϵit+1 ∼ N(0, 1) (21)

A representative firm uses aggregate capital Kt and aggregate effective
labor Lt for production via a Cobb-Douglas function:

F (Kt, Lt) = ztK
α
t L

1−α
t (22)

Aggregate productivity zt follows an exogenous (apparently linear) AR(1)
process:

zt+1 = ρzzt + σzϵt+1, with ϵt+1 ∼ N(0, 1) (23)
Aggregate capital Kt is the sum of all agent end-of-period savings (or

beginning-of-period assets) Kt =
∑ℓ

i k
i
t, and aggregate effective labor Lt is

the sum of individual effective labor units Lt =
∑e

i ll exp(y
i
t). Factor prices

are determined by marginal products (δ is the depreciation rate):

Rt = 1− δ + ztαK
α−1
t L1−α

t (24)
Wt = zt(1− α)Kα

t L
−α
t (25)

4.1.2. State Space and Neural Network Input:
Theoretically, an agent’s decision depends on their own state (wit, y

i
t) and

the aggregate state of the economy, which is jointly determined by the dis-
tribution of all agent states Dt = {(wit, yit)}ℓi and the aggregate productivity
shock zt. To utilize neural networks for the solution, we feed this high-
dimensional state information as input. Specifically, for agent i, the input
vector hit to the neural network comprises:

• Current state information of all agents: Dt = {(wit, yit)}ℓi .

• The current aggregate shock: zt

• Agent i’s own specific state: (wit, y
i
t).

Thus, for each agent i, the input layer dimension is 2ℓ+ 1 + 2 = 2ℓ+ 3.
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4.1.3. Neural Network Approximations
We use neural networks to approximate the key functions:

• Policy Function (Consumption Ratio): ψ(sit; θ1) outputs the ratio of
consumption to cash-on-hand cit

wi
t
, using a Sigmoid function to ensure

it lies within [0, 1].

cit
wit

= σ(ζψ0 + ιψ(yit, w
i
t, Dt, zt; υ

ψ)) = ψ(sit; θ1) (26)

• Value Function: V (sit; θ2) directly outputs the estimated value of state
sit.

V i
t = ζV0 + ιV (yit, w

i
t, Dt, zt; υ

V ) = V (sit; θ2) (27)

Here, ι() represents the neural network (with parameters υ), ζ0 is a learn-
able adjustment coefficient, and θ = {ζ0, υ} denotes all parameters for that
network. These networks share the same input structure hit.

4.1.4. Pesudo Code
See Algorithm 1

4.1.5. Results
We applied our proposed deep learning solver to the Krusell-Smith model

and compared the results with benchmark methods from the literature (Maliar
et al., 2021), while also analyzing the training dynamics and robustness of
our approach.

(a) Value function (b) Policy function (c) Simulation

Fig. 3: Baseline
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Algorithm 1 Bellman-based training - Pretrain Phase
1: Neural Network Settings
2: ΦP (S; ΘP ): Policy network
3: ΦV (S; ΘV ): Value network
4: Si = ({wj, yj}j∈L, z, wi, yi) ▷ Agent state representation
5: Initialization
6: Initialize ΘP

0 ,Θ
V
0 with normal initialization

7: Initialize memory pool MP ← ∅
8: Draw initial economy states Datasim0 ∈ RBatchsim×L×2

9: for k = 1 to Epochspretrain do
10: Pretrain Value Network
11: for iter = 1 to train_value_times_each_step do
12: Sample batch {wi, yi}Li=1 ∼MP
13: Compute target v̂i = u(ci) + βEM [ΦV (Si

′
; ΘV

fixed)]

14: Update ΘV : min 1
L

∑L
i=1

1
M

∑M
m=1[(Φ

V (Si; ΘV )− v̂im)]
15: end for
16: end for
17: for k = 1 to Epochstotal do
18: for phase = 1 to alternating_steps do
19: Policy Network Update
20: for iter = 1 to train_policy_times_each_step do
21: Sample batch {wi, yi}Li=1 ∼MP
22: Compute ci = ΦP (Si; ΘP )
23: Compute gradient: ∇ΘPEM [u(ci) + βΦV (S(ci); ΘV

fixed)]

24: Update ΘP using Adam
25: end for
26: Value Network Update
27: for iter = 1 to train_value_times_each_step do
28: Sample new batch {wi, yi}Li=1 ∼MP
29: Compute v̂i = u(ΦP (Si; ΘP

fixed)) + βEM [ΦV (Si
′
; ΘV )]

30: Update ΘV : min 1
L

∑L
i=1

1
M

∑M
m=1[(Φ

V (Si; ΘV )− v̂im)]
31: end for
32: end for
33: Memory Pool Update
34: for sim = 1 to simulate_times do
35: Maintain queue: MP ← Datanew ∈ f(Datacurrent,ΦP )
36: end for
37: end for
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Fig. 4: Compared policy functions

Overall Solution Quality and Steady-State Simulation. From a macroscopic
perspective, our method successfully solves the Krusell-Smith model. The
obtained policy function ψ (as shown in Figure 3b) exhibits economically
plausible behavior (e.g., consumption rate decreases with assets, increases
with productivity). More importantly, when this policy function is used
for long-run simulations, the economy’s key aggregate variables (such as ag-
gregate capital) display stable dynamics, eventually fluctuating around a
steady state (as depicted in Figure 3c). This is qualitatively consistent with
theoretical expectations and existing literature, validating the fundamental
effectiveness of our solver.

Improvements in Policy Function Accuracy and Smoothness. A detailed com-
parison with the results of Maliar et al. (2021) (shown in Figure 4) reveals
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Fig. 5: Compared policy functions

advantages of our policy function in several key aspects. Firstly, our method
significantly improves the accuracy and stability of the policy function in
the tail regions of the state , avoiding potentially large errors or implausible
behavior in these areas. Secondly, our policy function exhibits greater over-
all smoothness, particularly in the lower asset range (front end), effectively
mitigating the non-smooth kinks or jumps that can arise in traditional or
some other deep learning-based methods.

Training Losses and Adversarial Equilibrium. Given that our method is
based on GAN-inspired adversarial training, the dynamics of the loss func-
tions during training (illustrated in Figure 5) differ from those in standard
supervised learning. The objective for the policy and value networks is not
necessarily to drive the loss to zero, but rather to reach an Adversarial Equi-
librium through mutual competition. As the figure shows (note that the
x-axis often uses a logarithmic scale, log10(training iterations), to display
long-term trends), the loss functions of both networks might exhibit sig-
nificant fluctuations in the early stages of training, reflecting the ongoing
”game” and mutual adaptation between them. As training progresses, the
losses gradually stabilize. This stabilization precisely indicates that the pol-
icy and value networks have reached a relatively stable equilibrium state,
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signifying that a solution approximately satisfying the Bellman optimality
conditions has been found.

(a) Random initial 1 (b) Random initial 2

Fig. 6: Different intialization

Method Robustness Check. To examine the stability and sensitivity of our
solver to initial conditions, we conducted multiple training runs, each time
using a different random seed to initialize the neural network parameters.
The results demonstrate (as shown in Figure 6) that despite starting from
different initial parameters, all training runs consistently converged to essen-
tially the same policy function and economic steady state. This indicates
that our method possesses good robustness and its solution is insensitive to
the random initialization of the neural networks, bolstering our confidence
in the reliability of the obtained results.

4.2. Model Extension: Endogenous Labor Supply Choice
To further test the generalizability of our proposed adversarial training

framework, we apply it to extensions of the standard Krusell-Smith model
that incorporate endogenous labor supply decisions. The significance of test-
ing generalizability lies in the fact that an ideal solver should adapt to dif-
ferent model structures without requiring substantial modifications to its
core training algorithm or loss functions. Notably, while Maliar and Maliar
(2022) also studied models with discrete labor choices, they employed dif-
ferent training strategies and loss function definitions compare with Maliar
et al. (2021). In contrast, we utilize the exact same adversarial training
framework and optimization objectives as used for the baseline KS model to
directly solve extended models featuring both continuous and discrete labor
choices, thereby validating the broad applicability of our method.
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4.2.1. Model Setup
We modify the baseline Krusell-Smith model to allow agents to choose

their labor supply lt.

Continuous Labor Supply. Agents can now continuously choose their labor
supply time lt within the interval [0, 1]. The utility function is accordingly
modified to include the disutility of labor:

u(c, l) =
(cκ(1− l)1−κ)1−γ − 1

1− γ
(28)

where κ > 0 control the ratio between leisure (1− l) and consumption c.
The labor income term in the budget constraint now becomes wit, ηit, lit:

wit+1 = Rt+1(w
i
t − cit) +Wt+1l

i
te
yit+1 (29)

For the neural network implementation, the output dimension of the pol-
icy network increases, needing to output both the consumption decision and
the labor supply decision lt. Since lt is constrained to [0, 1], a Sigmoid
activation function can be used for the output corresponding to lt.

Discrete Labor Supply. An alternative scenario, involves individuals making
labor participation decisions from a finite set of options, for example, lt ∈
{0, 1}or{0, 0.5, 1} (representing unemployed, part-time, and full-time). We
employ the Gumbel-Softmax trick at the end of the policy network. In this
case, the policy network outputs the probabilities of choosing each discrete
labor option, rather than the level itself.

4.2.2. results
We successfully applied the unmodified adversarial training framework

to both of the aforementioned labor supply extension models. The results
demonstrate (see Figures 7 (continuous), Figure 8 (binary discrete), Figure
9 (ternary discrete) for details) that the method effectively solves these more
complex models. Whether dealing with continuous labor supply or discrete
scenarios with two or three choices, the training process remained stable, and
the resulting policy functions (for consumption, savings, and labor supply)
exhibited economically plausible properties. For instance, the intertemporal
substitution effect in labor supply was clearly captured in the continuous
model. This strongly supports the generality of our proposed unified frame-
work, showcasing its ability to handle different types of decision variables
and model structures without requiring specific algorithmic adjustments.
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(a) Consumption choice (b) Labor choice

Fig. 7: Continous Labor choice model

(a) Consumption choice (b) Labor choice

Fig. 8: 2 Labor choices model
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(a) Consumption choice (b) Labor choice

Fig. 9: 3 Labor choices model

4.3. OLG Models
To further showcase the adaptability of our framework, we apply it to

Overlapping Generations (OLG) models. Unlike infinite horizon models,
agents in OLG models have finite lifespans, passing away after reaching a
maximum age, while new agents are continuously born. This core feature
necessitates certain adjustments to our original framework, particularly in the
definition of the value function, the neural network design, and the methods
for generating and utilizing training data.

4.3.1. Methodological Adjustments
Age Dependency and Value Function Structure Adjustment. The most critical
adjustment is incorporating age j (from 1 to the maximum age J) as part
of the state variables. Consequently, both the value function and policy
function explicitly depend on age: V (s, η, j; θ2) and ψ(s, η, j; θ1). The neural
network’s input layer is expanded accordingly to include age j (e.g., via one-
hot encoding) as an additional input. More importantly, the finite lifespan
introduces a definitive Terminal Condition: agents in their final period of
life J have no future, and their value is solely determined by their current
period:

V (s, η, J ; θ2) = u(cJ) (30)
This terminal condition requires special handling during neural network
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training, typically meaning that gradients are not computed for the value
function output of the final age group.

Target Value Calculation via Backward Iteraton. Since the solution to OLG
models inherently follows a Backward Iteraton structure, we must adhere to
this logic when training the value network V to compute its target value
Vtarget. Specifically, given the current policy network ψ(; θ1) , to calculate
the target value for an agent of age j in state (s, η), we need to simulate
forward this agent’s path from age j+1 to the end of life J and compute the
discounted sum of all future period utilities:

Vtarget(s, η, j) =
J∑

t=j+1

βt−ju(st, ηt, t, ψ(·|θ̂1)) (31)

The value network’s loss function is then defined based on this backward-
iteration-calculated target value:

LBellman(s, η, j) = (V (s, η, j|θ2)− Vtarget(s, η, j))2 (32)

This ensures the value network learns the true lifecycle value profile con-
sistent with theory.

Data Generation Adjustment. The data generation process needs to reflect
the demographic structure of the OLG model. We simulate N economies
in parallel, each containing all J Age Cohorts at any point in time, with
each cohort comprising ℓ agents of the same age. The simulation dimension
thus increases, requiring tracking of N × ℓ × J agents. Furthermore, the
simulation must include a birth and death mechanism: at the end of each
period, the current oldest cohort (age J) ”dies” and is removed from the
simulation, all other agents age by one (j → j + 1), and ℓ new agents of
age 1 are ”born” (typically with specific initial states, like zero assets). This
simulation approach (illustrated in Figure 10) ensures that the data in the
experience replay pool covers all stages of the lifecycle.

4.3.2. A Simple OLG Model Example
To demonstrate the adapted method, we consider a simple OLG model

in Azinovic et al. (2022).
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Fig. 10: Simulating with OLG
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Household. Household live for A = 6 periods, period t, household age s.
Household supply labor l0t = 1 only in new born with:

max
{cit+i,a

i
t+i}

A−1
i=0

Et

A−1∑
i=0

log(cit+i)

cht + ast = rtk
s
t + wtl

h
t

ks+1
t+1 = ast

aA−1
t ≥ 0

Firm. With C-D form product function
f(Kt, Lt, zt) = ηtK

α
t L

1−α
t +Kt(1− δt)

Kt =
A−1∑
s=0

kst

Lt =
A−1∑
s=0

lst = 1

rt = αηtK
α−1
t L1−α

t + (1− δt)
wt = (1− α)ηtKα

t L
−α
t

with and shock with {1, 2, 3, 4}i.i.d, accordingly δt ∈ {0.5, 0.5, 0.9, 0.9},
ηt ∈ {0.95, 1.05, 0.95, 1.05}.

4.3.3. Results
We applied the adapted adversarial training framework to this simple

OLG model. Figure 11 shows a comparison between the policy function
derived by our method (e.g., savings rate by age, represented by dots) and
a benchmark solution (e.g., obtained via traditional numerical methods or
an analytical solution under specific conditions, represented by circles). As
observed, the solution simulated by the neural network closely approximates
the benchmark solution, indicating that our framework adjustments were
successful in accurately capturing the lifecycle dynamics inherent in the OLG
model.

5. Conclusion
The accurate analysis of high-dimensional Heterogeneous Agent Models

(HAMs) is crucial for modern macroeconomics, yet poses significant compu-
tational challenges due to the curse of dimensionality. Traditional numerical
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Fig. 11: Basic OLG
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methods often struggle with high dimensions, while existing Artificial Intelli-
gence (AI)-driven approaches, despite their potential, are frequently limited
by reliance on specific equation forms (e.g., Euler equations), training insta-
bility, or a lack of generalizability across diverse model structures.

Addressing these limitations, this paper proposed and implemented a
unified, Bellman equation-based deep learning solver (Adversarial Dynamic
Programming Deep Solver, DABS). Our core contribution lies in construct-
ing an adversarial training framework inspired by Generative Adversarial
Networks (GANs). Within this framework, a parameterized policy network
(acting as the generator) and a value network (acting as the discriminator)
compete to jointly find the equilibrium solution satisfying the Bellman op-
timality conditions. This approach directly targets the Bellman equation,
circumventing the need for models to possess explicit first-order conditions
(Euler equations).

To ensure the framework’s effectiveness, stability, and efficiency, we in-
tegrated several key technical innovations: multi-pair shock sampling accel-
erated by GPUs optimizes the stability and efficiency of expectation cal-
culations; an economically constrained parallel simulation data generation
mechanism ensures the quality and relevance of training data; implicit en-
coding of market clearing conditions within the neural network enables the
method to efficiently handle models with general equilibrium features without
extra outer loops; and the introduction of an experience replay mechanism
breaks temporal correlations in data, enhancing training stability and sample
efficiency.

Through validation across a range of standard and extended models, we
demonstrated the effectiveness and broad applicability of our framework. On
the benchmark Krusell-Smith model, our method not only accurately solved
the model but also outperformed certain benchmark methods in terms of
policy function smoothness and behavior in tail regions. More importantly,
we showcased the framework’s generalizability: using the identical core ad-
versarial training algorithm, we successfully solved extended models featur-
ing both continuous and discrete endogenous labor supply choices, without
needing to modify the training strategy or loss function for different models,
unlike approaches in some related literature. Furthermore, with adaptive
adjustments to the value function definition and training process, the frame-
work effectively solves Overlapping Generations (OLG) models characterized
by finite lifecycles. Results from multiple runs with different initializations
also confirmed the robustness of our method.
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In summary, the proposed deep learning-based adversarial Bellman solver
provides a powerful, general-purpose, and computationally feasible tool for
tackling complex, high-dimensional heterogeneous agent models. By directly
and stably solving the Bellman equation, it lowers the barrier to analyzing
economic models involving non-smooth constraints, discrete choices, or intri-
cate feedback loops, offering a promising pathway for advancing the frontiers
of quantitative macroeconomic research. Future research directions could
include further enhancing computational efficiency, exploring more sophis-
ticated network architectures, and applying the framework to cutting-edge
models like HANK with richer heterogeneity dimensions (e.g., multi-asset
portfolio choice).
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